Showing posts with label Analytics. Show all posts
Showing posts with label Analytics. Show all posts

Tuesday, November 1, 2011

Is Siri future of BI?

Siri, a voice-activated "personal assistant" on the new iPhone 4S helps you send messages, set reminders, and search for information. You speak to Siri to ask it questions and give it commands, such as small tasks that you'd like it to complete. For example, ask Siri about the weather, and it will respond out loud with a short summary of the day's weather report and on-screen with a snapshot of the five-day forecast.

What will happen if we integrate Siri with BI applications? If we integrate Siri with BI application then conversation between BI end user and Siri will go like this

Siri: What can I help you with?
CEO: What is our sales revenue?
Siri: It's 300 mn till date. There is growth of 10% Y-o-Y.
CEO: Which is our worst performing region?
Siri: North. Sales revenue has declined 20% compared to the same period last year.
CEO: Text scott why is sales revenue declining? Can we meet tomorrow? (Scott - Regional Manager - North)
CEO: Set up sales review meeting with Scott at 9 am tomorrow.
Siri: Ok. I have set up a meeting at 9am.

Siri makes it so easy to consume the information and hence it is a ideal match for BI applications. Currently Apple doesn't allow third party developers to access Siri. When they open access to Siri, it will definitely change the way people use BI applications. Siri has potential to revolutionize BI application world.

Saturday, June 5, 2010

Power of Analytics

My wife and I were shopping the other day and she asked,“ Why are these people always asking us if we want to get a credit card? They have to know we have a couple already, don’t they? ”  While I can’t
pretend to know all the reasons why retailers train their customer - facing folks to push store credit cards, I do know that there are some informational advantages. Stores can use credit card data to determine spending pattern behavior. This in turn reveals the different charging patterns of different segments of customers, information that can be mapped to customer profitability. With the buying behavior captured, retailers can target their most profitable customers with a personalized campaign of couponing designed to stimulate behavior. Lot of retailers in India offer loyalty programs and cards. This program will tell you about purchases that were made at your store but Co-branded credit cards may also tell you about purchases that were made at your competition's stores.

All retailers have as one of their long - term goals the desire to keep profitable customers loyal to their store. Is there — via the wonders of analytics — a way for a retailer to know when a customer is on the verge of leaving your store and to do something to circumvent that decision? Analytically here you are asking two questions: How do I know if a customer is going to leave my store? What can I do about it?

Most people would develop an ad hoc report that says, “ Tell me all the people that provide $ X amount and if that sales volume has dropped by $ Y amount. So, if they used to buy $ 100 a week and now spend only $ 50 a week, maybe they ’ re leaving my store.” That was the traditional model. The challenge with that is that by the time that situation has occurred, that customer has likely already made the decision that they are leaving their store. What you want to do is to be able to predict that a customer is going to stop shopping at your store before it is noticeable in a loss of sales. So we did that in one of proof of concept at one the retailer.

We threw a whole bunch of data at the computer for a set of consumers who did lapse the store and for a whole bunch of people who haven’t. In this example, we did find that there was one key item that was a telltale product that if a customer used to buy this item, and then stopped buying this item, that there was a high percentage likelihood that this customer would stop shopping at that store. Do you have any idea what the product was? Believe it or not, it was salt.

Business Analytics helps you understand where the customer’s head at the time of contact/purchase. Understanding this would enable much more appropriate messaging and might enhance service recovery. Such situational awareness would allow airlines, when you check in at the kiosk, to say “ Oh, sorry about your delay yesterday, here’s a free Vada Pav or Idli or Coffee coupon. ”

Wednesday, March 10, 2010

Loyalty Programs: Derive more value from loyal customers

Today, I have become a member of loyalty program of a big retailer. I was very happy to be member of loyalty program as they were offering instant discount of 10% on my total bill. This is my 8th such membership. I am already a member of Kingfisher, Jet Airways, Cross word, Lifestyle, Shoppers Stop, Pantaloon and Park Avenue loyalty programs.

Today, there is a wide array of reward programs in virtually every industry segment. It has become defacto standard in Airlines and Retail industries.As membership in such programs continues to increase, many firms are left wondering whether their programs buy loyalty and increase customer value, or simply add costs without securing repeat business.Lot of organizations have started offering this programs as their competition is also offering such programs.They do not know whether customer loyalty/ reward programs actually influence consumers to change their behaviors, and if so,which factors of a program have the greatest influence.

I am a loyal customer Life Sytle(Retail Chain in India) for past few years, and I am also a member of their loyalty program. I haven't seen any special treatment given to me as their loyal customer in past few years. You are treated like any other customer in the store. Probably, they are offering this program because their competition is also offering similar programs. I like to buy from Life Style because of variety of brands they keep in their stores. One of the striking difference between Life Style loyalty program and other programs is that there is no loyalty program tier like Gold, Platinum, Silver etc. I think program tiers can be powerful incentives and a good way to reward your best customers with the best rewards.

I am also a member of Pantaloon loyalty program in India. They do have various loyalty program tiers. They offer discount based on program tiers. I buy things from Pantaloon just because it is not available in a nearby retail store.They are offering discount on things which I have any bought from Pantaloon.Loyalty programs like this turns loyal customers into price sensitive customers,who are then more likely to defect for a lower priced offer.

Loyalty and reward programs are typically designed to achieve four objectives: increase customer spending, improve retention, maintain competitive position and capture new customer data. But do such programs actually achieve those aims? There’s no doubt that today’s programs yield useful customer data, but what about the other objectives?

In order to achieve other objectives of loyalty programs, you need to analyze transactional data of loyalty members and tweak programs so that you can achieve maximum results.

Typically, BI query and reporting system will help you answer the following questions.

How do people behave in a loyalty program over a long period of time? Do things change as they move through tiers? Does their spending accelerate or decelerate? How do these trends align with customer demographics?

You need business analytics system to address the following questions

"Which segment of customer is most profitable?"
"What products can you cross sell and up sell to this segment?"
"How do you retain most profitable customers and let go non profitable customers?"
"How do I efficiently attract most profitable customer to become member of loyalty program?"

The answers to above questions will help you build loyalty of your customers around brand and the buying experience they have with your organization. This will in turn help you increase revenue from loyal customers.